Abstract

In this note, we study the non-linear evolution problem dY_t = -A Y_t dt + B(Y_t) dX_t, where X is a \gamma-Holder continuous function of the time parameter, with values in a distribution space, and -A the generator of an analytical semigroup. Then, we will give some sharp conditions on X in order to solve the above equation in a function space, first in the linear case (for any value of $\gamma$ in (0,1)), and then when B satisfies some Lipschitz type conditions (for \gamma>1/2). The solution of the evolution problem will be understood in the mild sense, and the integrals involved in that definition will be of Young type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.