Abstract

BackgroundPrevious behavioral studies have found that children with autism spectrum disorder (ASD) show greater interest in humanoid robots than in humans. However, the neural mechanism underlying this is not clear. This study compared brain activation patterns between children with ASD and neurotypical children while they watched videos with robots and humans. MethodWe recruited 45 children with ASD and 53 neurotypical children aged 4–6 years and recorded their neural activity in the dorsolateral prefrontal cortex (DLPFC) using a functional near-infrared spectroscopy (fNIRS) device when the two groups interacted with a robot or a human in a video. ResultsFirst, neural activity in the right DLPFC in children with ASD was significantly lower in the robot condition than in the human condition. Neural activity in the right DLPFC in children with ASD was also significantly lower than that of neurotypical children in the robot condition. Second, the neural activity in the left DLPFC between the human and robot conditions was negatively correlated in children with ASD, while it was positively correlated in neurotypical children. Moreover, neural activity in the left DLPFC in children with ASD was significantly correlated with the ADOS scores in both conditions. ConclusionsWhile neurotypical children showed comparable neural activity to humanoid robots and human beings, the children with ASD showed significantly different neural activity under those two conditions. Children with ASD may need more selective attention resources for human interaction than for robot interaction. It is also much more difficult for children with ASD to neglect the attraction of robots. Neural activity of the left DLPFC of children with ASD is correlated with their symptoms, which maybe a possible indicator for early diagnosis. Neural activity of the right DLPFC guided their atypical reactions and engagements with robots. Our study contributes to the current understanding of the neural mechanisms responsible for the different behavioral reactions in children with ASD toward robots and humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call