Abstract

The last 10,000 years of activity at the Medicine Lake volcanic center in northern California is characterized by bimodal mafic and siliceous volcanism. Interflow element variations are complex and exhibit a discontinuity for most elements between 57 and 62 per cent SiO 2. No simple linear or curvilinear element trends exist between the mafic (Modoc) and siliceous (glass) volcanics. The geochemical variation patterns exhibited by volcanic rocks from the Medicine Lake volcanic center preclude any simple model for magma origin involving either varying degrees of melting or of fractional crystallization. A model is tentatively invoked for the andesites and basalts involving ≳ 35 per cent melting of eclogite (of altered rise tholeiite composition) in a descending slab followed by varying amounts of fractional crystallization and perhaps magma mixing. Up to 20 per cent of shallow fractional crystallization of plagioclase and minor Ti-magnetite seems to be required by the Sr, Eu anomaly, and TiO 2 distributions. Compositional variation and high δO 18 values in most dacite glass flows are best interpreted in terms of a crustal origin involving up to 50 per cent partial melting of average continental crust. Rhyolite glasses may have formed by small degrees of melting (20–30 per cent) of this crust followed by 5–10 per cent of shallow fractional crystallization (removing dominantly plagioclase) or by 40–50 per cent fractional crystallization of a dacite parent (~63 per cent SiO 2) produced in the crust. The shallow fractional crystallization is necessary to explain the low Sr contents and large negative Eu anomalies in the rhyolites. Dacites from the Composite Flow are tentatively interpreted to have formed by shallow mixing of a hybrid magma (composed of varying amounts of andesite and dacite) with rhyolite prior to and during eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.