Abstract

We report on a case study in secure programming, focusing on the design, implementation and auditing of programs for playing the board game Battleship. We begin by precisely defining the security of Battleship programs, borrowing ideas from theoretical cryptography. We then consider three implementations of Battleship: one in Concurrent ML featuring a trusted referee; one in Haskell/LIO using information flow control to avoid needing a trusted referee; and one in Concurrent ML using access control to avoid needing such a referee. All three implementations employ data abstraction in key ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.