Abstract
Despite superior performance on various natural language processing tasks, pre-trained models such as BERT are challenged by deploying on resource-constraint devices. Most existing model compression approaches require re-compression or fine-tuning across diverse constraints to accommodate various hardware deployments. This practically limits the further application of model compression. Moreover, the ineffective training and searching process of existing elastic compression paradigms (Wang et al., 2020; Cai et al., 2020) prevents the direct migration to BERT compression. Motivated by the necessity of efficient inference across various constraints on BERT, we propose a novel approach, YOCO-BERT, to achieve compress once and deploy everywhere. Specifically, we first construct a huge search space with 1013 architectures, which covers nearly all configurations in BERT model. Then, we propose a novel stochastic nature gradient optimization method to guide the generation of optimal candidate architecture which could keep a balanced trade-off between explorations and exploitation. When a certain resource constraint is given, a lightweight distribution optimization approach is utilized to obtain the optimal network for target deployment without fine-tuning. Compared with state-of-the-art algorithms, YOCO-BERT provides more compact models, yet achieving 2.1%–4.5% average accuracy improvement on the GLUE benchmark. Besides, YOCO-BERT is also more effective, e.g., the training complexity is O(1) for N different devices. Codes available https://github.com/MAC-AutoML/YOCO-BERT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.