Abstract

AbstractWe describe the design, analysis, implementation, and evaluation of Pirsona, a digital content delivery system that realizes collaborative-filtering recommendations atop private information retrieval (PIR). This combination of seemingly antithetical primitives makes possible—for the first time—the construction of practically efficient e-commerce and digital media delivery systems that can provide personalized content recommendations based on their users’ historical consumption patterns while simultaneously keeping said consumption patterns private. In designing Pirsona, we have opted for the most performant primitives available (at the expense of rather strong non-collusion assumptions); namely, we use the recent computationally 1-private PIR protocol of Hafiz and Henry (PETS 2019.4) together with a carefully optimized 4PC Boolean matrix factorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.