Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) modification is both responsive to nutrient availability and capable of altering intracellular cellular signalling. We summarize data defining a role for O-GlcNAcylation in metabolic homeostasis and epigenetic regulation of development in the intrauterine environment. O-GlcNAc transferase (OGT) catalyzes nutrient-driven O-GlcNAc addition and is subject to random X-inactivation. OGT plays key roles in growth factor signalling, stem cell biology, epigenetics and possibly imprinting. The O-GlcNAcase, which removes O-GlcNAc, is subject to tight regulation by higher order chromatin structure. O-GlcNAc cycling plays an important role in the intrauterine environment wherein OGT expression is an important biomarker of placental stress. Regulation of O-GlcNAc cycling by X-inactivation, epigenetic regulation and nutrient-driven processes makes it an ideal candidate for a nutrient-dependent epigenetic regulator of human disease. In addition, O-GlcNAc cycling influences chromatin modifiers critical to the regulation and timing of normal development including the polycomb repression complex and the ten-eleven translocation proteins mediating DNA methyl cytosine demethylation. The pathway also impacts the hypothalamic-pituitary-adrenal axis critical to intrauterine programming influencing disease susceptibility in later life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Opinion in Clinical Nutrition and Metabolic Care
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.