Abstract
Observed breakBRD (“break bulges in red disks”) galaxies are a nearby sample of face-on disk galaxies with particularly centrally concentrated star formation: they have red disks but recent star formation in their centers as measured by the D n 4000 spectral index. In Kopenhafer et al., a comparable population of breakBRD analogs was identified in the TNG simulation, in which the central concentration of star formation was found to reflect a central concentration of dense, star-forming gas caused by a lack of dense gas in the galaxy outskirts. In this paper, we examine the circumgalactic medium of the central breakBRD analogs to determine if the extended halo gas also shows differences from that around comparison galaxies with comparable stellar mass. We examine the circumgalactic medium gas mass, specific angular momentum, and metallicity in these galaxy populations. We find less gas in the circumgalactic medium of breakBRD galaxies, and that the breakBRD circumgalactic medium is slightly more concentrated than that of comparable M * galaxies. In addition, we find that the angular momentum in the circumgalactic medium of breakBRD galaxies tends to be low for their stellar mass, and shows more misalignment to the angular momentum vector of the stellar disk. Finally, we find that the circumgalactic medium metallicity of breakBRD galaxies tends to be high for their stellar mass. Together with their low star formation rate, we argue that these circumgalactic medium properties indicate a small amount of disk feeding concentrated in the central regions and a lack of low-metallicity gas accretion from the intergalactic medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.