Abstract

Tracking the movement of small organisms is of tremendous importance to understanding the ecology of populations, communities, and ecosystems. However, it remains one of the most difficult challenges facing the field of movement ecology. We developed an intrinsic marking technique for tracking small organisms using dietary fatty acid profiles as a biomarker as well as for clarifying source-sink dynamics between populations on a landscape level. Navel orangeworm moths (NOW), Amyelois transitella (Walker) (Lepidoptera: Pyralidae), raised on two different host plants with significantly different fatty acid profiles, were used to develop a model that distinguishes NOW based on their larval host plant. Wild NOW from both known and unknown host plants were used to validate the model. NOW fatty acid profiles showed striking similarities to the fatty acid profile of their host plant demonstrating that fatty acids can act as an intrinsic marking technique for quantifying the movement of small organisms. We anticipate that given sufficient spatial variation in dietary fatty acids, this technique will be useful in studying the movement of arthropods and other invertebrates particularly when addressing questions of source-sink dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.