Abstract

Let $f$ and $g$, of weights $k' > k \geq 2$, be normalised newforms for $\Gamma_0(N)$, for square-free $N > 1$, such that, for each Atkin-Lehner involution, the eigenvalues of $f$ and $g$ are equal. Let $\lambda\mid\ell$ be a large prime divisor of the algebraic part of the near-central critical value $L(f\otimes g,(k+k'-2)/2)$. Under certain hypotheses, we prove that $\lambda$ is the modulus of a congruence between the Hecke eigenvalues of a genus-two Yoshida lift of (Jacquet-Langlands correspondents of) $f$ and $g$ (vector-valued in general), and a non-endoscopic genus-two cusp form. In pursuit of this we also give a precise pullback formula for a genus-four Eisenstein series, and a general formula for the Petersson norm of a Yoshida lift. Given such a congruence, using the 4-dimensional $\lambda$-adic Galois representation attached to a genus-two cusp form, we produce, in an appropriate Selmer group, an element of order $\lambda$, as required by the Bloch-Kato conjecture on values of $L$-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.