Abstract
Pathogenic yersiniae secrete 14 Yop proteins via the type III pathway. Synthesis of YopQ occurs when the type III machinery is activated by a low-calcium signal, but not when the calcium concentration is above 100 microM. To characterize the mechanism that regulates the expression of yopQ, mutants that permit synthesis of YopQ in the presence of calcium were isolated. Yersiniae bearing deletion mutations in yopN, tyeA, sycN, or yscB synthesized and secreted YopQ in both the presence and the absence of calcium. In contrast, yersiniae with a deletion in yopD or lcrH synthesized YopQ in the presence of calcium but did not secrete the polypeptide. These variants displayed no defect in YopQ secretion under low-calcium conditions, revealing that yopD and lcrH are required for the regulation of yopQ expression. Experiments with transcriptional and translational fusions to the npt reporter gene suggest that yopD and lcrH regulate yopQ expression at a posttranscriptional step. YopD and LcrH form a complex in the bacterial cytosol and bind yopQ mRNA. Models that can account for posttranscriptional regulatory mechanisms of yop expression are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.