Abstract
Given a vertex operator algebra V, one can construct two associative algebras, the Zhu algebra A(V) and the C2-algebra R(V). This gives rise to two abelian categories A(V)-Mod and R(V)-Mod, in addition to the category of admissible modules of V. In case V is rational and C2-cofinite, the category of admissible V-modules and the category of all A(V)-modules are equivalent. However, when V is not rational, the connection between these two categories is unclear. The goal of this paper is to study the triplet vertex operator algebra W(p), as an example to compare these three categories, in terms of abelian categories. For each of these three abelian categories, we will determine the associated Ext quiver, the Morita equivalent basic algebra, i.e., the algebra End(⊕L∈IrrPL)op, and the Yoneda algebra Ext⁎(⊕L∈IrrL,⊕L∈IrrL). As a consequence, the category of admissible log-modules for the triplet VOA W(p) has infinite global dimension, as do the Zhu algebra A(W(p)), and the associated graded algebra grA(W(p)) which is isomorphic to R(W(p)). We also describe the Koszul properties of the module categories of W(p), A(W(p)) and grA(W(p)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.