Abstract
Stringent fire prevention requirements are imperative in expansive environments. Fire detection in diverse large-scale settings typically relies on sensor-based or AI-driven target detection methods. Traditional fire detectors often suffer from false alarms and missed detections, failing to meet the fire safety requirements of large-scale structures. Many existing target detection algorithms are characterized by substantial model sizes. Some detection terminals in large structures face challenges deploying these models due to constrained computational resources. To address this issue, we propose a lightweight model, YOLOv8-EMSC, derived from YOLOv8n. The incorporation of C2f_EMSC, replacing the C2f module, significantly reduces the model parameters in the enhanced YOLOv8-EMSC model compared to YOLOv8n, thereby enhancing model inference speed. Extensive testing and validation using a custom-built large-scale infrared fire dataset demonstrates a 9.6 % reduction in parameters compared to the baseline model for YOLOv8-EMSC, achieving an average precision of 95.6 %, surpassing both the baseline and mainstream models and significantly enhancing fire detection accuracy in expansive environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.