Abstract
The rapid development of convolutional neural networks has significant implications for automated underwater fishing operations. Among these, object detection algorithms based on underwater robots have become a hot topic in both academic and applied research. Due to the complexity of underwater imaging environments, many studies have employed large network structures to enhance the model’s detection accuracy. However, such models contain many parameters and consume substantial memory, making them less suitable for small devices with limited memory and computing capabilities. To address these issues, a YOLOv6-based lightweight underwater object detection model, YOLOv6-ESG, is proposed to detect seafood, such as echinus, holothurian, starfish, and scallop. First, a more lightweight backbone network is designed by rebuilding the EfficientNetv2 with a lightweight ODConv module to reduce the number of parameters and floating-point operations. Then, this study improves the neck layer using lightweight GSConv and VoVGSCSP modules to enhance the network’s ability to detect small objects. Meanwhile, to improve the detection accuracy of small underwater objects with poor image quality and low resolution, the SPD-Conv module is also integrated into the two parts of the model. Finally, the Adan optimizer is utilized to speed up model convergence and further improve detection accuracy. To address the issue of interference objects in the URPC2022 dataset, data cleaning has been conducted, followed by experiments on the cleaned dataset. The proposed model achieves 86.6% mAP while the detection speed (batch size = 1) reaches 50.66 FPS. Compared to YOLOv6, the proposed model not only maintains almost the same level of detection accuracy but also achieves faster detection speed. Moreover, the number of parameters and floating-point operations reaches the minimum levels, with reductions of 75.44% and 79.64%, respectively. These results indicate the feasibility of the proposed model in the application of underwater detection tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.