Abstract

High-speed railway catenaries are vital components in railway traction power supply systems. To ensure stable contact between the pantograph and the catenary, droppers are positioned between the messenger wire and contact line. The failure of one or more droppers will affect the power supply of the catenary and the operation of the railway. In this paper, we modify the You Only Look Once version five (YOLOv5) model in several ways and propose a method for improving the identification of dropper status and the detection of small defects. Firstly, to focus on small target features, the selective kernel attention module is added to the backbone. Secondly, the feature graphs of different scales extracted from the backbone network are fed into the bidirectional feature pyramid network for multiscale feature fusion. Thirdly, the YOLO head is replaced by a decoupled head to improve the convergence speed and detection accuracy of the model. The experimental results show that the proposed model achieves a mean average precision of 92.9% on the dropper dataset, an increase of 3.8% over the results using YOLOv5s. The detection accuracy of small dropper defects reaches 79.2%, representing an increase of 10.8% compared with YOLOv5s and demonstrating that our model is better at detecting small defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.