Abstract

In recent years, object detection algorithms have achieved great success in the field of machine vision. To pursue the detection accuracy of the model, the scale of the network is constantly increasing, which leads to the continuous increase in computational cost and a large requirement for memory. The larger network scale allows their execution to take a longer time, facing the balance between the detection accuracy and the speed of execution. Therefore, the developed algorithm is not suitable for real-time applications. To improve the detection performance of small targets, we propose a new method, the real-time object detection algorithm based on transfer learning. Based on the baseline Yolov3 model, pruning is done to reduce the scale of the model, and then migration learning is used to ensure the detection accuracy of the model. The object detection method using transfer learning achieves a good balance between detection accuracy and inference speed and is more conducive to the real-time processing of images. Through the evaluation of the dataset voc2007 + 2012, the experimental results show that the parameters of the Yolov3-Pruning(transfer): model are reduced by 3X compared with the baseline Yolov3 model, and the detection accuracy is improved, realizes real-time processing, and improves the detection accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call