Abstract
As an outstanding method for ocean monitoring, synthetic aperture radar (SAR) has received much attention from scholars in recent years. With the rapid advances in the field of SAR technology and image processing, significant progress has also been made in ship detection in SAR images. When dealing with large-scale ships on a wide sea surface, most existing algorithms can achieve great detection results. However, small ships in SAR images contain little feature information. It is difficult to differentiate them from the background clutter, and there is the problem of a low detection rate and high false alarms. To improve the detection accuracy for small ships, we propose an efficient ship detection model based on YOLOX, named YOLO-Ship Detection (YOLO-SD). First, Multi-Scale Convolution (MSC) is proposed to fuse feature information at different scales so as to resolve the problem of unbalanced semantic information in the lower layer and improve the ability of feature extraction. Further, the Feature Transformer Module (FTM) is designed to capture global features and link them to the context for the purpose of optimizing high-layer semantic information and ultimately achieving excellent detection performance. A large number of experiments on the HRSID and LS-SSDD-v1.0 datasets show that YOLO-SD achieves a better detection performance than the baseline YOLOX. Compared with other excellent object detection models, YOLO-SD still has an edge in terms of overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.