Abstract
The small area of a printed circuit board (PCB) results in densely distributed defects, leading to a lower detection accuracy, which subsequently impacts the safety and stability of the circuit board. This paper proposes a new YOLO-BFRV network model based on the improved YOLOv8 framework to identify PCB defects more efficiently and accurately. First, a bidirectional feature pyramid network (BIFPN) is introduced to expand the receptive field of each feature level and enrich the semantic information to improve the feature extraction capability. Second, the YOLOv8 backbone network is refined into a lightweight FasterNet network, reducing the computational load while improving the detection accuracy of minor defects. Subsequently, the high-speed re-parameterized detection head (RepHead) reduces inference complexity and boosts the detection speed without compromising accuracy. Finally, the VarifocalLoss is employed to enhance the detection accuracy for densely distributed PCB defects. The experimental results demonstrate that the improved model increases the mAP by 4.12% compared to the benchmark YOLOv8s model, boosts the detection speed by 45.89%, and reduces the GFLOPs by 82.53%, further confirming the superiority of the algorithm presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.