Abstract

The huge volume expansion of over 300%, dreadful electrical conductivity and labile solid electrolyte interphase (SEI) are the principal reasons of the sluggish development of Si anodes for lithium-ion batteries (LIBs). Therefore, we propose, for the first time, that titanium nitride (TiN) be utilized as a coating layer to fabricate yolk–shell-structured Si@TiN nanoparticles. The design of the yolk–shell structure can reserve excrescent space for the volume expansion of Si electrodes, which helps to mitigate volumetric changes. Moreover, the TiN protecting layer is beneficial to the formation of a stable and flimsy SEI film, avoiding the excessive consumption of electrolytes. Finally, the ultrahigh conductivity (4 × 104 S cm−1) as well as the high mechanical modulus of TiN can significantly promote charge transfer and avoid the crushing of the SEI film caused by excessive local stress during reduplicative Li deposition/stripping. Accordingly, the Si@TiN composites show excellent electrochemical properties and suppressed volume expansion compared with pure silicon nanoparticles (Si NPs). Here, these yolk–shell-structured Si@TiN nanoparticles exhibit improved rate performance and excellent long cycling stability with 2047 mA h g−1 at 1000 mA g−1 after 180 cycles. This paradigm may provide a feasible engineering protocol to push the properties of Si anodes for next-generation LIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call