Abstract

The rational and effective combination of multicomponent materials and the design of subtle microstructure for efficient microwave absorption are still challenging. In this study, carbon-coated CoFe with heterogeneous interfaces was space-restricted in the void space of hollow mesoporous carbon spheres through a facile approach involving electrostatic adsorption and annealing, and a high-performance microwave absorber (MAs) (denoted as Co0.7Fe0.3@C@void@C) was successfully prepared. The heterostructure, three-dimensional lightweight porous morphology, and electromagnetic synergy strategy enabled the Co0.7Fe0.3@C@void@C material with yolk-shell structure to exhibit surprising microwave absorption properties. When the annealing temperature and filler loading were 550° C and 15 wt%, respectively, the composites exhibited an effective absorption bandwidth (EAB) of 7.16 GHz at 2.48 mm and a minimum reflection loss of −24.1 dB at 2.11 mm. A maximum EAB of 7.21 GHz at 2.37 mm could be achieved for the composite prepared with an annealing temperature of 650° C. In addition, radar cross-section experiments demonstrated, the potential practical applicability of Co0.7Fe0.3@C@void@C. This work expands a new avenue to develop high-performance and lightweight MAs with ingenious microstructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call