Abstract

Prepulse inhibition (PPI) of the acoustic startle response is an operational measure of sensorimotor gating that can be assessed in both humans and animals. The noradrenergic system appears to play a role in PPI as the alpha1 agonist cirazoline disrupts PPI and the alpha1 antagonist prazosin blocks the disruptions in PPI produced by phencyclidine. To better understand the role of adrenergic receptors in the modulation of PPI, we assessed the effects of the alpha2 adrenergic antagonist yohimbine (2.5, 5.0, and 7.5 mg/kg) on PPI. Yohimbine reduced PPI at the 5.0 and 7.5 mg/kg doses, without significantly affecting startle magnitude. In separate experiments, we examined whether adrenergic or serotonergic compounds blocked this disruption in PPI produced by yohimbine. There was a trend for the alpha2 agonist clonidine (0.01, 0.02 mg/kg) to attenuate the PPI disruption produced by yohimbine. However, other alpha2 agonists (guanfacine, medetomidine) and an alpha1 antagonist (prazosin) failed to prevent the disruption. The alpha2 antagonist atipamezole weakly decreased PPI in a narrow dose range (0.3-1.0 mg/kg). The 5-HT1A antagonist WAY100,635 (0.1, 0.3 mg/kg) significantly prevented the yohimbine-induced disruption of PPI. These findings indicate that (1) yohimbine disrupts PPI in rats and (2) the yohimbine-induced disruption of PPI is largely due to the 5-HT1A partial agonist properties of yohimbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.