Abstract

Higher sensitivity in timing jitter measurement has great importance in studies related to precise measurements. Timing jitter noise floors contribute one of the main parts in existing measurements. In this article, a phase error signal is obtained by superposition of outputs of two optical heterodyne discrimination apparatus to suppress the noise floor. Excess phase noise of the electrical amplifier is avoided. We demonstrate 2.6 × 10−14 fs2/Hz (~160 ys/√Hz) timing jitter noise floor between two identical 99 MHz repetition-rate mode-locked Ti:sapphire lasers after their repetition rates are tightly synchronized. The performance is extensible to reach an integrated timing jitter resolution of one attosecond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.