Abstract

Active site number, water dissociation, and hydrogen adsorption free energy are the three main parameters for regulating the activity of electrocatalysts for hydrogen evolution reaction (HER) in alkaline media. However, at present, simultaneous modulations of these three parameters for alkaline HER still remain challenging. In this work, we take CoP as the model material and demonstrate that a metal and nonmetal dual-doping strategy can achieve simultaneous modulation of these three parameters by inducing lattice irregularity and optimizing the electronic configuration in CoP nanomaterials. Benefiting from the oxygen and copper dual-doping collective effect, the optimized O,Cu–CoP nanowire array electrode shows nearly 10-fold enhancement in catalytic activity for alkaline HER compared to a pure CoP nanowire electrode. Our work may provide a new concept to boost performance of nonprecious metal electrocatalysts for alkaline HER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call