Abstract

Because the high-density lipoprotein receptor (HDL-R) is a key element in cholesterol homeostasis and a potential therapeutic target for hypercholesterolemic drugs, an understanding of HDL-R regulation is essential. The sterol regulatory element (SRE) binding protein-1a (SREBP-1a) was shown to positively regulate HDL-R gene expression through two SREs. SREBP-1a requires the presence of a coactivator like simian-virus-40-protein-1 (Sp1) to promote maximum activation of the HDL-R promoter. Negative regulatory factors are also known to play a role in cholesterol homeostasis, and the ubiquitous Yin Yang-1 zinc finger transcription factor (YY1) has been shown to repress several sterol-responsive gene promoters. A search of the rat HDL-R promoter revealed two putative YY1 binding sites (distal, -1329 to -1321; proximal, -1211 to -1203). Upon removal of both YY1 binding sites, YY1 was unable to repress HDL-R activation under basal (unstimulated) promoter conditions. However, YY1 was still an efficient transcriptional repressor for SREBP-1a-induced activation. YY1 was able to attenuate the transcriptional synergy caused by the combined actions of SREBP-1a and Sp1. Two-hybrid studies confirmed that YY1 bound with high affinity to SREBP-1a, and mobility shift assays demonstrated that YY1 could disrupt SREBP-1a binding to both SREs. The molecular consequence of YY1 intervention seems to override any positive interactions between Sp-1 and SREBP-1a and results in the disruption of SREBP-1a binding to the SREs in the HDL-R promoter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.