Abstract

The 3' Igh enhancers, DNase I hypersensitive site (hs) 3B and/or hs4, are required for germline transcription, and hence, class switch recombination for multiple isotypes. A number of hs3-binding transcription factors have been identified by EMSA, including octamer and NF-kappa B family members, and Pax5. We have found that the binding of the transcription factor, Yin Yang 1 (YY1), to hs3 and to the mu E1 site of the intronic enhancer, E mu, is induced in primary splenic B cells after approximately 48 h in response to LPS and other activators of class switch recombination. Transient transfection experiments in B cell lines indicate that YY1 is an activator of hs3. Interestingly, levels of YY1 expression are unchanged in resting and LPS-stimulated B cells. Mixing experiments followed by EMSA showed that a protein present in resting B cells prevented binding of YY1 to DNA. We found that recombinant retinoblastoma protein (Rb) inhibited binding of YY1 to hs3 in a dose-dependent manner, and we have identified complexes of endogenous YY1 with the Rb in resting B cells, but not in LPS-stimulated B cells. A difference in Rb phosphorylation state was also confirmed between resting (G(0)) B cells and LPS-stimulated B cells. These observations suggest that the interaction of YY1 with hypophosphorylated Rb in resting B cells prevents interaction of YY1 with DNA. After stimulation with class-switching activators, such as LPS, Rb becomes hyperphosphorylated and YY1 is released and can then bind to the hs3 enhancer and E mu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.