Abstract

Plane-strain yielding from a crack in an infinite elastic body is represented here by a distribution of edge dislocations on two planes inclined at angles ±ga to the crack plane, and the equilibrium condition is solved numerically. Approximate analytical expressions are obtained for the plastic-zone length, the crack opening displacement, and the J-integral, as functions of the applied stress and α. A comparison with a co-planar model of the plastic zone gives very similar results for α ≈ 65°. It is shown that fracture criteria based either on a critical crack opening displacement (COD) or on a critical value of J are always different, and the use of the former may lead to critical defect-sizes which are twice as large as those given by the latter. Furthermore, COD appears not to be a well-defined material property. The critical J criterion gives a fracture stress which is α-dependent : this may be responsible for deviations towards results of linear elastic fracture mechanics when post-yield fracture mechanics is used to analyse extensive yielding. The changes in the stress field of the crack due to the existence of the plastic zone are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call