Abstract

The yielding behavior of interstitial-free (IF) steel and 70/30 brass prestrained in plane strain tension and subsequently strained in uniaxial tension has been investigated experimentally. Upon reloading in uniaxial tension, brass exhibited a negative transient (decrease in flow stress) and steel exhibited a positive transient (increase in flow stress). When the yield stress is defined by the offset method, the positive transient is difficult to model using conventional yield theories as elastic deformation is thought to occur outside the original yield or loading surface. In this work, the yield point was defined using the axial strainvs transverse strain curve as measured with biaxial resistance strain gages. The curve has an initially linear elastic portion; the slope then gradually changes until the linear plastic slope is reached. The intersection of the elastic and plastic slopes is defined as the yield point. Using this alternate definition, the yielding behavior of the prestrained metals was investigated. The yield stress for both prestrained brass and steel was found to be lower than the expected monotonic stress. Compared to previous research based on a traditional definition of yield point, this result is unexpected in prestrained steel and shows that yielding does occur inside the loading surface. The positive transient may, therefore, be modeled using conventional yield theories provided that the yield surface is defined using this alternate technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call