Abstract

The viscosity of activated sludge plays a major role on oxygen transfer and mass transport and consequently influences the hydrodynamic regime and the system performance of a membrane bioreactor (MBR). Yield stress is an important concept in rheology related to the mixing and power requirements in a stirred tank. This study examined the rheological characteristics of activated sludge sampled in a pilot airlift MBR system for domestic wastewater treatment under ambient desert conditions, using a rotational rheometer (AR 2000, TA Instruments, USA) equipped with cone-plate geometry. Both static and dynamic yield stresses were observed at the transition point of 25 s −1 of shear rate for an MLSS concentration range of 2.74–10.2 g/L. The static yield stress is a phenomenon that has not yet been evaluated for activated sludge. The mechanisms of the co-existence of both static and dynamic yield stresses and their engineering significance are discussed. In addition, a mathematical model to describe the rheological properties of the sludge is proposed. The relationships between viscosity, MLSS, temperature and shear rate were obtained statistically. The activation energy for the viscosity of the sludge in the airlift sMBR was found to be 9.217 kJ mol −1, and could be the cause of rapid fluctuation of transmembrane pressure with temperature variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.