Abstract

We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material.

Highlights

  • It is generally believed that nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts [1]

  • We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature

  • The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material

Read more

Summary

Introduction

It is generally believed that nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts [1]. Strength is an important aspect of material for mechanical and particular applications under loading and static pressure. Transparent MgAl2O4 ceramic has received considerable attention and has been widely studied [3–6] because of its high melting point, good mechanical strength, high resistance against chemical attack, and extraordinary optical properties [7–11]. Extensive work has been performed in studying the fabrication [12, 13], micro-morphology [14, 15] and transparent mechanism [16] of transparent MgAl2O4 nano-ceramic. There is limited research on investigating one of the fundamental parameters of transparent MgAl2O4 nanoceramic the yield strength at high pressure and temperature. The aim of this work is to study the yield strength of transparent MgAl2O4 nano-ceramic at pressure up to 5 GPa and temperature up to 900°C through the analysis of the shape of X-ray diffraction lines

Objectives
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.