Abstract

Abstract Ni based superalloy Ni–Al–Cr with γ and γ′ phase was studied under high pressure up to 30 GPa using diamond anvil cell technique. In-situ X-ray diffraction data was collected on these alloys under hydrostatic and non-hydrostatic conditions. Cubic phase remains stable up to the highest pressure of about 30 GPa. Bulk modulus and its pressure derivative obtained from the volume compression of pressure data are K = 166.6 ± 5.8 GPa with K′ set to 4 under hydrostatic conditions and K = 211.3 ± 4.7 GPa with K′ set to 4 for non-hydrostatic conditions. Using lattice strain theory, maximum shear stress ‘t’ was determined from the difference between the axial and radial stress components in the sample. The magnitude of shear stress suggests that the lower limit of compressive strength increases with pressure and shows maximum yield strength of 1.8 ± 0.3 GPa at 20 GPa. Further, we have also determined yield strength using pressure gradient method. In both the methods, yield strength increases linearly with applied pressure. The results are found to be in good agreement with each other and the literature values at ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.