Abstract
Yield ratios of identified hadrons observed in high multiplicity p+p and p+Pb collisions at LHC show remarkable similarity with those in Pb+Pb collisions, indicating some important and universal underlying dynamics in hadron production for different quark gluon final states. We use the quark combination model to explain the data of yield ratios in these three collision systems. The observed $p/\pi$ and $\Lambda/K_s^0$ can be reproduced simultaneously by quark combination, and these two ratios reflect the rate of baryon production at hadronization which is the same in light sector and strange sector and is roughly constant in p+p, p+Pb and Pb+Pb collision systems over three orders of magnitude in charged particle multiplicity.The data of $K_s^0/\pi$, $\Lambda/\pi$, $\Xi/\pi$ and $\Omega/\pi$ show a hierarchy behavior relating to the strangeness content, and are naturally explained by quark combination both in the saturate stage at high multiplicity and in the increase stage at moderate multiplicity. Our results suggest that the dynamical characteristic of quark combination is necessary in describing the production of hadrons in small systems created in p+p and p+Pb collisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.