Abstract

Yield increases in forage maize (Zea mays L.) in NW Europe over time are well documented. The driving causes for these, however, remain unclear as there is little information available regarding the role of plant traits triggering this yield progress. Ten different hybrids from the same maturity group, which have typically been cultivated in Northwest Germany from 1970 to recent and are thus representing breeding progress over four decades, were selected for a 2-year field study in northern Germany. Traits that were investigated included leaf area index, leaf architecture, photosynthesis, radiation use efficiency, root mass, root length density, and turnover. Based on a mixed model analysis with these traits as co-variates, parameters related to leaf characteristics, in particular the number and length of leaves, the radiation use efficiency, and the leaf orientation, were identified as most influential on the yield progress (0.13 tons ha-1 year-1). In contrast to our hypothesis, root biomass only increased negligibly in newer hybrids compared to older ones, confirming the ‘functional equilibrium’ theory for high input production systems. Due to an abundance of nutrients and water in such high input systems, there is no incentive for breeders to select for carbon partitioning toward the rooting system. Breeding evidence to increase forage quality were also negligible, with no change in cob starch concentration, forage digestibility, nor NDF content and NDF digestibility. The observed increase in yield over the last four decades is due to a combination of increased temperature sums (~240 GDD within 40 years), and a higher radiation interception and radiation use efficiency. This higher radiation interception was driven by an increased leaf area index, with a higher number of leaves (16 instead of 14 leaves within 40 years) and longer leaves of newer compared to older hybrids. Future selection and adaptation of maize hybrids to changing environmental conditions are likely to be the key for high productivity and quality and for the economic viability of maize growing and expansion in Northern Europe.

Highlights

  • Maize (Zea mays L.) is the cereal with the largest global production and is of great economic importance for animal feeding, either as grain or as whole plant forage

  • While in this study hybrids from the various eras were grown side by side under the same climatic conditions, we investigated the impact on possible past climate change on maize yields based on the MaisProg simulation model (Herrmann et al, 2005; Kruse et al, 2008)

  • The observed increase in silage yield in NW Europe can largely be explained through the increased temperature sum during the vegetation period of maize crops and the resulting earlier maturity in the last four decades

Read more

Summary

Introduction

Introduction Maize (Zea mays L.) is the cereal with the largest global production and is of great economic importance for animal feeding, either as grain or as whole plant forage. In the 20-year period between 1991 and 2010, the annual increase in global maize production was 2.2%, achieved through an annual increase in production area of 0.9% and a global average annual yield increase a rate of 1.5%. In the US and Canada, maize grain yields have increased nearly sixfold during the hybrid era (1939 to present), and according to Lee and Tollenaar (2007), 60% of this increase have been driven by genetic improvements of the hybrids. In Germany, increases in maize grain yields have been substantial. Other factors that have likely contributed to the increases in yield include increased use of fertilizers, better weed control, and improved management practices (Lauer et al, 2001), as well as climate change (Assefa et al, 2012). Several studies on yield trends have been published, but Laidig et al (2014) pointed out that comparisons of genetic and non-genetic trends should be considered with caution due to interactions of agronomic practices and environmental conditions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.