Abstract
Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing. We use spatial locations of the IC chips on the wafers as covariates, and develop four models based on Poisson regression, negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative binomial (ZINB) regression. Along with the hierarchical Bayesian approaches, spatial variations of defects within one wafer as well as among different wafers are effectively incorporated in the yield models. Wafermap data obtained from an industrial collaborator are used to illustrate the proposed models. The results indicate that the Poisson regression model consistently underestimates the true yield because of extraneous Poisson variation caused by defect clustering. On the contrary, NB regression, ZIP regression, and ZINB regression models provide more reliable yield estimation and prediction in real applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.