Abstract
AbstractIn a single material, hardnesses can range from 3σys up to the theoretical strength or approximately E/10 where σys and E are tensile yield strength and modulus. This variation results with decreasing depth of penetration. Such indentation size effects may be associated with surface contamination, passivation films and dislocation phenomena. Even where dislocation nucleation is relatively difficult as in GaAs, the hardness varies from about 1.5 to 15 GPa as the indentation depth decreased from about 100 nm to 10 nm. Similar size effects in BCC metals can give hardnesses which range from about 1 to 30 GPa as the indentations decrease from 1000 nm to 10 nm. Here, there are two types of “yield” phenomena which can be related to an organic contamination film and a dislocation pile-up induced oxide film fracture. As measured in single crystals of Fe, Mo, W, Ta and NiAl, this typically gives lower and upper “yield” points which range from 0.6 to 10 raN. When a dislocation pile-up breaks through the oxide film, velocities can be reasonably large due to the stress at the head of the pile-up. The average dislocation velocity of this avalanche is controlled, to first order, by the Peierls’ energy. A more exhaustive study of NiAl, with a B2/BCC type crystal structure shows that dislocation velocity can be related to the local pile-up stress and a Peierls’ barrier of about 2.2 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.