Abstract

Soil water balance was studied in a 25-year-old experiment, on chernozem soil, in different crop-rotation systems (mono-, bi- and triculture) in dry (2007) and rainy (2008) seasons, in maize production. Soil water deficit values in maize production were much lower in 2008 than in 2007 in non-irrigated and irrigated plots of three crop rotation systems because of favourable precipitation supply. We found difference between the water deficit values of two irrigation treatments. We measured lower values in irrigated plots of three crop-rotation systems before sowing: non-irrigated plots in monoculture 105 mm, in biculture 101 mm, in triculture 121 mm and irrigated plots in monoculture 90 mm, in biculture 91 mm, in triculture 111 mm. Soil waterstock started to decrease with the rise in average temperature and, despite an increase in precipitation quantity, we calculated higher water deficit values. Precipitation in August and the high average temperature intensified the water deficit. Water deficit showed its highest values in early September. We examined the water balance of the soil profile in 0–2.0 m and we concluded that the water deficit of the 0.8–1.2 m soil layers was most intensive in both non-irrigated and irrigated treatments, because of significant root mass. Our results showed that irrigation had a more important influence on the yield in a dry cropyear (2007 characterized by abiotic, water stress) than in an optimum water supply cropyear (2008).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.