Abstract

YidC was previously discovered to play a critical role for the insertion of the Sec-independent M13 procoat and Pf3 coat phage proteins into the Escherichia coli inner membrane. To determine whether there is an absolute requirement of YidC for membrane protein insertion of any endogenous E. coli proteins, we investigated a few representative membrane proteins. We found that membrane subunits of the F(0) sector of the F(1)F(0)ATP synthase and the SecE protein of the SecYEG translocase are highly dependent on YidC for membrane insertion, based on protease mapping and immunoblot analysis. We found that the SecE dependency on YidC for membrane insertion does not contradict the observation that depletion of YidC does not block SecYEG-dependent protein export at 37 degrees C. YidC depletion does not decrease the SecE level low enough to block export at 37 degrees C. In contrast, we found that protein export of OmpA is severely blocked at 25 degrees C when YidC is depleted, which may be due to the decreased SecE level, as a 50% decrease in the SecE levels drastically affects protein export at the cold temperature [Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749-57]. These studies reported here establish that physiological substrates of YidC include subunits of the ATP synthase and the SecYEG translocase, demonstrating that YidC plays a vital role for insertion of endogenous membrane proteins in bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call