Abstract

Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.