Abstract

Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y. pestis subsp. microtus biovar caucasica strains circulating within populations of common voles in Georgia and Armenia were reported to carry a single substitution of alanine to serine. We investigated polymorphism of the Caf1 sequences among other Y. pestis subsp. microtus strains, which have a limited virulence in guinea pigs and in humans. Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins exist in three isoforms, the global type Caf1NT1 (Ala48 Phe117), type Caf1NT2 (Ser48 Phe117) found in Transcaucasian-highland and Pre-Araks natural plague foci #4–7, and a novel Caf1NT3 type (Ala48 Val117) endemic in Dagestan-highland natural plague focus #39. Both minor types are the progenies of the global isoform. In this report, Caf1 polymorphism was analyzed by comparing predicted intrinsic disorder propensities and potential protein-protein interactivities of the three Caf1 isoforms. The analysis revealed that these properties of Caf1 protein are minimally affected by its polymorphism. All protein isoforms could be equally detected by an immunochromatography test for plague at the lowest protein concentration tested (1.0 ng/mL), which is the detection limit. When compared to the classic Caf1NT1 isoform, the endemic Caf1NT2 or Caf1NT3 had lower immunoreactivity in ELISA and lower indices of self- and cross-protection. Despite a visible reduction in cross-protection between all Caf1 isoforms, our data suggest that polymorphism in the caf1 gene may not allow the carriers of Caf1NT2 or Caf1NT3 variants escaping from the Caf1NT1-mediated immunity to plague in the case of a low-dose flea-borne infection.

Highlights

  • The outbreaks, epidemics and pandemics of human plague are caused by Yersinia pestis subsp. pestis strains that possess universal hypervirulence for a wide range of mammals and are ubiquitously distributed [1,2,3,4]

  • Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins possess three isoforms, the global allele type NT1 (Ala48 Phe117), NT2 type (Ser48 Phe117) peculiar to Transcaucasian highland and Pre-Araks natural plague foci, and a novel NT3 type (Ala48 Val117) endemic for Dagestan-highland natural plague focus

  • To understand if found Caf1 polymorphism has an effect on structural and functional properties of this protein, we evaluated the disorder propensities of Caf1NT1, Caf1NT2, and Caf1NT3 isoforms and analyzed the effect of corresponding amino acid substitutions on potential disorder-based binding sites

Read more

Summary

Introduction

The outbreaks, epidemics and pandemics of human plague are caused by Yersinia pestis subsp. pestis strains that possess universal hypervirulence for a wide range of mammals and are ubiquitously distributed [1,2,3,4]. The outbreaks, epidemics and pandemics of human plague are caused by Yersinia pestis subsp. Microtus are endemic within populations of some voles (Microtus spp.) and cause only rare sporadic diseases [1, 5] with no human-to-human transmission [5]. Strains of both subspecies can make a proteinaceous capsule first described by Alexandre Yersin [6]. This antiphagocytic capsule [7] is the main component of plague vaccines [8,9,10,11] and is the most important target for laboratory diagnosis of plague [12]. The typical cleavage site is located between Ala and Ala residues [14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.