Abstract

Yersinia pseudotuberculosis binds to β1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT−. Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to β1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the β1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with β1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of β1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.

Highlights

  • A great spectrum of Gram-negative bacteria depends on a specialized secretion mechanism to establish a successful infection in the host

  • This involves activation of the host cell Rho GTPase by the cooperative action of adhesin-mediated high affinity binding to specific cell receptor molecules known as b1 integrins, and interaction of components of the type III secretion system (TTSS) with the host cell membrane

  • This molecular mechanism of controlling TTSS may not be restricted to Y. pseudotuberculosis and might take place during infection of host cells with other pathogens that encode homologues of Yersinia TTSS proteins

Read more

Summary

Introduction

A great spectrum of Gram-negative bacteria depends on a specialized secretion mechanism to establish a successful infection in the host. In pathogenic Yersinia species, a TTSS is encoded in a large virulence plasmid, and is required for counteracting innate and adaptive host immune defenses [2]. This is accomplished by injection of six effector proteins (YopE, YopT, YopH, YopJ, YopO, YopM) that target different host cell signaling molecules. This injection mechanism is known as Yop translocation. YopT inhibits preferably RhoA, by cleaving the isoprenyl group and removing the GTPase from the membrane [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call