Abstract

According to global estimates, there are 2.3 million new cases and 1.8 million fatalities due to lung cancer each year. Despite recent progress in diagnosis and treatment, persistent challenges highlight the urgent need for novel therapeutics and innovative approaches to combat lung cancer effectively. Accordingly, in the present study, we aimed to investigate the anticancer properties of potential inhibitors of HIF-1α, compound 7a and 7b. In the study, HTB-54 and BEAS-2B cell lines were used. MTT cell viability experiments were performed to determine the effect of newly synthesized HIF inhibitors 7a and 7b on cell viability under normoxic and hypoxic conditions. Quantitative expression levels of HIF1A were determined by real-time PCR approach. While the half maximum inhibitory concentration (IC50) of compound 7a in HTB-54 cells was 10.37 µM under normoxic conditions, it was found to be 10.63 µM under hypoxic conditions. The IC50 value of another HIF inhibitor 7b in HTB-54 cells was found to be 8.80 µM under normoxic conditions and 9.54 µM under hypoxic conditions. The expression level of HIF1A was found to be lower in cells exposed to compounds 7a and 7b under hypoxia compared to the control group. Conversely, in normoxia, HIF1A expression level in cells exposed to compound 7a increased 6.5-fold (p<0.0001) compared to the control group, while it was found to increase approximately 9-fold (p<0.0001) when exposed to 7b. Consequently, both compound 7a and 7b holds great promise for future therapeutic interventions to lung cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call