Abstract

Recently, there has been growing interest in developing Bi3+-activated luminescence materials for optoelectronic applications. Herein, new yellow/orange-emitting ABZn2Ga2O7:Bi3+ (ABZGO, A = Ca, Sr; B = Ba, Sr) phosphors with tunable optical properties are synthesized by an alkaline earth cation substitution. When Sr2+ substitutes Ca2+ and Ba2+, the excitation wavelength has a red shift from 325 to 363 nm, matching well with the n-UV chip based white light-emitting diodes (WLEDs). CaBaZn2Ga2O7:0.01Bi3+ (CBZGO:0.01Bi3+) exhibits two evident emission peaks at 570 and 393 nm originating from the respective occupation of Ca and Ba sites by Bi3+ ions. The optical tuning of the CBZGO:Bi3+ phosphor is achieved by changing the Bi3+ doping content and excitation wavelength based on the selected site occupation. Differently, both SrBaZn2Ga2O7:0.01Bi3+ (SBZGO:0.01Bi3+) and Sr2Zn2Ga2O7:0.01Bi3+ (SZGO:0.01Bi3+) phosphors exhibit a single broad emission band, peaking at 600 and 577 nm, respectively. Two different Bi3+ sites are also verified respectively in SBZGO and SZGO hosts by the Gaussian fitting of the asymmetric PL spectra and lifetime analysis. The different luminescence behaviors of ABZGO:0.01Bi3+ phosphors should be ascribed to the synergistic effect of the centroid shift, crystal-field splitting, and Stokes shift. Moreover, the temperature-dependent PL spectra reveal that cation substitutions of Sr2+ for Ca2+ and Ba2+ can efficiently improve the thermal stability of ABZGO:0.01Bi3+ phosphors. In view of different thermal responses to various temperatures for two emission peaks of the CBZGO:0.01Bi3+ phosphor, an optical thermometer is designed and has a good relative sensitivity (Sr = 1.453% K–1) at 298 K. Finally, a WLED with CRI = 97.9 and CCT = 3932 K is obtained by combining SZGO:0.01Bi3+ and BAM:Eu2+ phosphors with a 370 nm n-UV chip, demonstrating that SZGO:0.01Bi3+ is an excellent yellow-orange-emitting phosphor for n-UV WLED devices. This work stimulates the exploration of optical tuning by cation substitution to obtain remarkable luminescence materials for optical temperature sensing and WLED applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.