Abstract

BackgroundCuticular wax plays important role in protecting plants from drought stress. In Arabidopsis WRI4 improves drought tolerance by regulating the biosynthesis of fatty acids and cuticular wax. Cyperus esculentus (yellow nutsedge) is a tough weed found in tropical and temperate zones as well as in cooler regions. In the current study, we report the molecular cloning of a WRI4-like gene from Cyperus esculentus and its functional characterization in Arabidopsis.ResultsUsing RACE PCR, full-length WRI-like gene was amplified from yellow nutsedge. Phylogenetic analyses and amino acid comparison suggested it to be a WRI4-like gene. According to the tissue-specific expression data, the highest expression of WRI4-like gene was found in leaves, followed by roots and tuber. Transgenic Arabidopsis plants expressing nutsedge WRI4-like gene manifested improved drought stress tolerance. Transgenic lines showed significantly reduced stomatal conductance, transpiration rate, chlorophyll leaching, water loss and improved water use efficiency (WUE). In the absence of drought stress, expression of key genes for fatty acid biosynthesis was not significantly different between transgenic lines and WT while that of cuticular wax biosynthesis genes was significantly higher in transgenic lines than WT. The PEG-simulated drought stress significantly increased expression of key genes for fatty acid as well as wax biosynthesis in transgenic Arabidopsis lines but not in WT plants. Consistent with the gene expression data, cuticular wax load and deposition was significantly higher in stem and leaves of transgenic lines compared with WT under control as well as drought stress conditions.ConclusionsWRI4-like gene from Cyperus esculentus improves drought tolerance in Arabidopsis probably by promoting cuticular wax biosynthesis and deposition. This in turn lowers chlorophyll leaching, stomatal conductance, transpiration rate, water loss and improves water use efficiency under drought stress conditions. Therefore, CeWRI4-like gene could be a good candidate for improving drought tolerance in crops.

Highlights

  • Cuticular wax plays important role in protecting plants from drought stress

  • In the current study we report the cloning and characterization of a WRI4-like gene from Cyperus esculentus (CeWRI4)

  • Amino acid sequence comparison indicated that this nutsedge WRI-like peptide showed 31.06 and 52.03% amino acid sequence similarity with Arabidopsis WRI3 and WRI4, respectively, it was named as C. esculentus WRI4 (CeWRI4)

Read more

Summary

Introduction

Cuticular wax plays important role in protecting plants from drought stress. In Arabidopsis WRI4 improves drought tolerance by regulating the biosynthesis of fatty acids and cuticular wax. Aerial surfaces of terrestrial plants are covered with a layer of cuticular wax, which protects plants from pathogen infection [1], insect attack [2], UV radiation [3, 4] and drought stress [5,6,7,8,9,10]. Cuticular wax is a complex mixture consisting mainly of very-long-chain fatty acids (VLCFAs) and their derivatives [11,12,13]. Many attempts have been made to increase the cuticular wax content in plant organs with an ultimate objective of improving drought stress tolerance [6, 16, 18, 23,24,25,26]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call