Abstract

We discuss the influence of the type of β-diketone ancillary ligand in Iridium (III) bis phenyl-benzothiazole complexes ((bt)2Ir(β-diketone)) on their photophysical and electroluminescent properties when they are used as dopants in white organic light-emitting diodes (WOLED). For this purpose, we investigated four novel yellow cyclometalated complexes: (bt)2Ir(dbm), (bt)2Ir(fmtdbm), (bt)2Ir(tta) and (bt)2Ir(bsm), where dbm = 1,3-diphenylpropane-1,3-dionate; fmtdbm = 1-(4-fluorophenyl)-3-(4-methoxyphenyl)propane-1,3-dionate; tta = 4,4,4-trifluoro-1-(thiophene-2-yl)butane-1,3-dionate; and bsm = 1-phenylicosane-1,3-dionate). To obtain white light by mixing emissions of two complementary colors (yellow emitted by the dopant and blue, by another emitter), we chose the following OLED structure: ITO/doped HTL/ElL/ETL/M, where ITO was a transparent anode of In2O3:SnO2; M, a metallic Al cathode; HTL, 4,4’-Bis(9H-carbazol-9-yl)biphenyl (CBP) involved in a poly(N-vinylcarbazole) (PVK) matrix; ElL, an electroluminescent layer of aluminum(III)bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq); and ETL, an electron-transporting layer of zinc(II)bis(2-2-hydroxyphenyl)benzothiazole. We found that all complexes are suitable candidates for fabrication of WOLED. The best results were demonstrated by the device doped with 2 wt % of (bt)2Ir(bsm), which had twice as high luminescence (1100 cd/m2) and one-and-a-half as high current efficiency (5 cd/A) as the device doped with 1.25 wt % of the known (bt)2Ir(acac), with its 580 cd/m2 and 3.4 cd/A at approximately the same CIE (Commission Internationale de L’Eclairage) (x/y) coordinates of the warm white light emitted by the two devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.