Abstract
Over 30 MAK (maintenance of killer) genes are necessary for propagation of the killer toxin-encoding M1 satellite double-stranded RNA of the L-A virus. Sequence analysis revealed that MAK7 is RPL4A, one of the two genes encoding ribosomal protein L4 of the 60S subunit. We further found that mutants with mutations in 18 MAK genes (including mak1 [top1], mak7 [rpl4A], mak8 [rpl3], mak11, and mak16) had decreased free 60S subunits. Mutants with another three mak mutations had half-mer polysomes, indicative of poor association of 60S and 40S subunits. The rest of the mak mutants, including the mak3 (N-acetyltransferase) mutant, showed a normal profile. The free 60S subunits, L-A copy number, and the amount of L-A coat protein in the mak1, mak7, mak11, and mak16 mutants were raised to the normal level by the respective normal single-copy gene. Our data suggest that most mak mutations affect M1 propagation by their effects on the supply of proteins from the L-A virus and that the translation of the non-poly(A) L-A mRNA depends critically on the amount of free 60S ribosomal subunits, probably because 60S association with the 40S subunit waiting at the initiator AUG is facilitated by the 3' poly(A).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.