Abstract

The sodium super ion conductor (NASICON) structure materials are essential for sodium-ion batteries (SIBs) due to their robust crystal structure, excellent ionic conductivity, and flexibility to regulate element and valence. However, the poor electronic conductivity and inferior energy density caused by the nature of these materials have always been obstacles to commercialization. Herein, using yeast as a template to derive NASICON structure Na3MnTi(PO4)3 (NMTP) materials (noted as Yeast@NMTP/C) is presented. The Yeast@NMTP/C material retains the microsphere morphology of the yeast template and not only controls the particle size (around 2 μm) to shorten the Na+ diffusion pathways but also improves the electronic conductivity to optimize the electrochemical kinetics. The Yeast@NMTP/C cathode delivers reversible multielectron redox reactions including Ti4+/3+, Mn3+/2+, and Mn4+/3+ and exhibits a high capacity of 108.5 mAh g-1 with a 79.2% capacity retention after 1000 cycles at a 2C rate. The sodium storage mechanism of Yeast@NMTP/C reveals that the addition of Ti4+/3+ redox plays a key role in improving the Na+ diffusion kinetics, and both solid-solution and two-phase reactions take place during the desodiation and sodiation process. Additionally, the high-rate and long-span cycle performance of Yeast@NMTP/C at 10C is ascribed to contribute to pseudocapacitance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.