Abstract

Bacteriophage endolysin is one of the potential alternatives of conventional antibiotics, but the intrinsic limitations of the bacterial expression system may undermine the comprehensive application of this therapeutic protein. To circumvent such limitations, we adopted a yeast surface display system as a novel expression platform for endolysin. Endolysin LysSA11 from staphylococcal phage SA11 was expressed and surface-displayed in Saccharomyces cerevisiae to exhibit sufficient antimicrobial activity against Staphylococcus aureus. Without any protein isolation or purification procedures, we showed that direct treatment of LysSA11-displaying yeast cells could accomplish a 5-log reduction of viable Staphylococcus aureus within 3 h. Furthermore, the surface-displayed LysSA11 exhibited superior stability over the soluble form of purified LysSA11 during 14 days of storage in a refrigerated environment. We suggest that the yeast surface display system is an efficient, stable, and straightforward platform for the production and antibacterial applications of endolysin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call