Abstract

Sodium Dodecyl Sulfate, or SDS, is an anionic detergent with widespread use in industrial and household cleaning products, scientific laboratories, and personal care products such as toothpaste and shampoo. The potential toxicity of SDS has been well-characterized in whole organism studies and its potential effects on the environment continue to be studied. Herein, we undertake a chemical-genetic screen to explore whether low concentrations of SDS have any discernible effects at the cellular level. Our screen of the homozygous diploid yeast deletion collection identified numerous gene deletions that confer sensitivity to SDS. Subsequent bioinformatic and biological analyses reveal that yeast unable to synthesize tryptophan are especially sensitive to the presence of SDS. Interestingly, even wild-type yeast with an intact tryptophan biosynthetic pathway exhibit growth defects in the presence of SDS on media lacking tryptophan. Altogether, we have shown that low levels of SDS, primarily through effects on tryptophan availability, impact the basic cell biology of a eukaryotic cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.