Abstract

Puf3p regulates the stability of nuclear-encoded mRNAs acting in mitochondrial biogenesis and function in Saccharomyces cerevisiae. This work identifies the phosphorylation of Pop2p, a component of the deadenylase complex, as being critical for adapting Puf3p-mediated mRNA decay upon carbon source alterations. We demonstrate that the Puf3p-Pop2p association diminishes in mitochondria-reliant conditions and establish Yak1p, a kinase that phosphorylates Pop2p at threonine 97, as a new player in Puf3p-mediated regulation of mRNA decay. Yak1p deletion alters the half-life of Puf3p target mRNAs. Our findings outline a metabolism-driven regulatory switch, whereby, in mitochondria-independent conditions, Puf3p recruits Pop2p and the decay machinery to bound mRNAs for rapid decay. Conversely, in mitochondria-reliant conditions, the association of Puf3p with Yak1p increases, placing Yak1p proximal to neighboring Pop2p. Subsequent Pop2p phosphorylation reduces the Puf3p-Pop2p interaction and stabilizes Puf3p target mRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.