Abstract

PAS kinase is an evolutionarily conserved serine/threonine protein kinase. Mammalian PAS kinase is activated under nutrient replete conditions and is important for controlling metabolic rate and energy homeostasis. In yeast, PAS kinase acts to increase the synthesis of structural carbohydrate at the expense of storage carbohydrates through phosphorylation of the enzyme UDP-glucose pyrophosphorylase. We have identified two pathways that activate yeast PAS kinase; one is responsive to nutrient conditions while the other is responsive to cell integrity stress. These pathways differentially activate the two PAS kinase proteins in Saccharomyces cerevisiae, Psk1 and Psk2, with Psk1 alone responding to activation by nonfermentative carbon sources. We demonstrate that, in addition to transcriptional effects, both of these pathways post-translationally activate PAS kinase via its regulatory N-terminus. As a whole, this system acts to coordinate glucose partitioning with alterations in demand due to changes in environmental and nutrient conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.