Abstract

The DNA mismatch repair (MMR) system is a major DNA repair pathway whose function is critical for the correction of DNA biosynthetic errors. MMR is initiated by the binding of MutS proteins to mismatches and unpaired nucleotides followed by the recruitment of MutL proteins. The major MutL activity in eukaryotes is performed by MutLα, the heterocomplex of MLH1-PMS1 in yeast and plants and MLH1-PMS2 in humans. We here report the effect the expression of Arabidopsis PMS1 protein exerts on Saccharomyces cerevisiae genomic stability. A strain carrying specific microsatellite instability reporter systems was chosen for the study. The plant protein failed to complement the hypermutator phenotype of a pms1 deficient strain but increased approximately 14-fold and 2,000-fold the mutation rates of his7-2 and lys2::InsE-A 14 loci of MMR proficient strains when compared to wild-type strains, respectively. Overexpressing AtMLH1 in the AtPMS1-overproducing strain generated an increase in mutation rate comparable to that of AtPMS1 expression alone. Deletion of the C-terminal residues implicated in protein-protein interaction and including the putative endonuclease sequence of AtPMS1 completely eliminated the mutator phenotype. Taken together, these results indicate that the plant proteins affect yeast genomic stability, very possibly altering protein-protein interactions that are necessary to complete repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.